PhD defense, May 24, 2007

Intersection multiplicities and Grothendieck spaces

Esben Bistrup Halvorsen

Department of Mathematical Sciences
University of Copenhagen
Throughout, R denotes a commutative, Noetherian, local ring with maximal ideal m.
Throughout, R denotes a commutative, Noetherian, local ring with maximal ideal m. Define $D(R) =$ the derived category of R.
Throughout, R denotes a commutative, Noetherian, local ring with maximal ideal m. Define

- $\mathcal{D}(R) =$ the derived category of R.

- $\mathcal{D}_f(R) =$ the full subcategory of finite complexes.
Throughout, R denotes a commutative, Noetherian, local ring with maximal ideal m. Define

- $\mathcal{D}(R) =$ the derived category of R.
- $\mathcal{D}_f(R) =$ the full subcategory of finite complexes.
- $\mathcal{P}_f(R) =$ the full subcategory of finite complexes isomorphic to a bounded complex of projectives.
Throughout, R denotes a commutative, Noetherian, local ring with maximal ideal m. Define

- $\mathcal{D}(R) = \text{the derived category of } R$.
- $\mathcal{D}^f(R) = \text{the full subcategory of finite complexes}$.
- $\mathcal{P}^f(R) = \text{the full subcategory of finite complexes isomorphic to a bounded complex of projectives}$.

Let $X, Y \in \mathcal{D}^f(R)$ with $\text{Supp } X \cap \text{Supp } Y = \{m\}$.
Throughout, R denotes a commutative, Noetherian, local ring with maximal ideal m. Define

- $D(R) =$ the derived category of R.
- $D^f_\square(R) =$ the full subcategory of finite complexes.
- $P^f(R) =$ the full subcategory of finite complexes isomorphic to a bounded complex of projectives.

Let $X, Y \in D^f_\square(R)$ with $\text{Supp } X \cap \text{Supp } Y = \{m\}$. The intersection multiplicity of X and Y is defined as

$$\chi(X, Y) = \sum_i (-1)^i \text{length } H_i(X \otimes_R^L Y)$$

whenever $X \in P^f(R)$ or $Y \in P^f(R)$.
The ring R satisfies vanishing if

$$\chi(X, Y) = 0 \text{ when } \dim(\text{Supp } X) + \dim(\text{Supp } Y) < \dim R.$$
The ring R satisfies vanishing if

$$\chi(X, Y) = 0 \quad \text{when} \quad \dim(\text{Supp } X) + \dim(\text{Supp } Y) < \dim R.$$

This generalizes the vanishing conjecture by Serre.
INTERSECTION MULTIPLICITIES

The ring R satisfies vanishing if

$$\chi(X, Y) = 0 \quad \text{when} \dim(\text{Supp } X) + \dim(\text{Supp } Y) < \dim R.$$

This generalizes the vanishing conjecture by Serre. The ring R satisfies weak vanishing if this holds when both $X \in \text{P}^f(R)$ and $Y \in \text{P}^f(R)$.
The ring R satisfies vanishing if

$$\chi(X, Y) = 0 \quad \text{when} \dim(\text{Supp } X) + \dim(\text{Supp } Y) < \dim R.$$

This generalizes the vanishing conjecture by Serre. The ring R satisfies weak vanishing if this holds when both $X \in P_f(R)$ and $Y \in P_f(R)$.

Theorem (Dutta–Hochster–McLaughlin). *The vanishing conjecture does not hold, so not all rings satisfy vanishing!*
The ring R satisfies vanishing if

$$\chi(X, Y) = 0 \quad \text{when} \quad \dim(\text{Supp } X) + \dim(\text{Supp } Y) < \dim R.$$

This generalizes the vanishing conjecture by Serre. The ring R satisfies weak vanishing if this holds when both $X \in \text{P}^f(R)$ and $Y \in \text{P}^f(R)$.

Theorem (Dutta–Hochster–McLaughlin). *The vanishing conjecture does not hold, so not all rings satisfy vanishing!*

So far, all rings satisfy weak vanishing.
Assume that R is complete of prime characteristic p and with perfect residue field.
Assume that R is complete of prime characteristic p and with perfect residue field. Let $X, Y \in D^f(R)$ with
$\text{Supp } X \cap \text{Supp } Y = \{m\}$, $X \in P^f(R)$ and
$\dim(\text{Supp } X) + \dim(\text{Supp } Y) \leq \dim R$.
Assume that R is complete of prime characteristic p and with perfect residue field. Let $X, Y \in D^f_{\mathfrak{m}}(R)$ with $\text{Supp } X \cap \text{Supp } Y = \{m\}$, $X \in \text{P}^f(R)$ and $\dim(\text{Supp } X) + \dim(\text{Supp } Y) \leq \dim R$. The Dutta multiplicity of X and Y is defined as

$$
\chi_{\infty}(X,Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim}(\text{Supp } X)} \chi(LF^e(X), Y).
$$
Assume that R is complete of prime characteristic p and with perfect residue field. Let $X, Y \in \mathcal{D}^f_\square(R)$ with $\text{Supp } X \cap \text{Supp } Y = \{m\}$, $X \in \mathcal{P}^f(R)$ and $\text{dim}(\text{Supp } X) + \text{dim}(\text{Supp } Y) \leq \text{dim } R$. The Dutta multiplicity of X and Y is defined as

$$
\chi_\infty(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim}(\text{Supp } X)} \chi(\mathcal{L}F^e(X), Y),
$$

where $\mathcal{L}F$ is the left-derived Frobenius functor.
Assume that R is complete of prime characteristic p and with perfect residue field. Let $X, Y \in \text{D}_f^\bullet(R)$ with $\text{Supp } X \cap \text{Supp } Y = \{m\}$, $X \in \text{P}_f(R)$ and $\dim(\text{Supp } X) + \dim(\text{Supp } Y) \leq \dim R$. The Dutta multiplicity of X and Y is defined as

$$
\chi_\infty(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim}(\text{Supp } X)} \chi(LF^e(X), Y),
$$

where LF is the left-derived Frobenius functor, given by

$$
X = \cdots \longrightarrow X_i \overset{\partial^X_i}{\longrightarrow} X_{i-1} \longrightarrow \cdots
$$
Assume that R is complete of prime characteristic p and with perfect residue field. Let $X, Y \in D_{\square}^f(R)$ with \(\text{Supp } X \cap \text{Supp } Y = \{m\} \), $X \in P^f(R)$ and \(\dim(\text{Supp } X) + \dim(\text{Supp } Y) \leq \dim R \). The Dutta multiplicity of X and Y is defined as

\[
\chi_{\infty}(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim}(\text{Supp } X)} \chi(\text{LF}^e(X), Y),
\]

where LF is the left-derived Frobenius functor, given by

\[
X \sim \cdots \longrightarrow R^m \xrightarrow{(a_{ij})} R^n \longrightarrow \cdots
\]
Assume that R is complete of prime characteristic p and with perfect residue field. Let $X, Y \in D^f(R)$ with $\text{Supp } X \cap \text{Supp } Y = \{m\}$, $X \in \text{P}^f(R)$ and $\dim(\text{Supp } X) + \dim(\text{Supp } Y) \leq \dim R$. The Dutta multiplicity of X and Y is defined as

$$\chi_{\infty}(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim}(\text{Supp } X) \chi(\text{LF}^e(X), Y)},$$

where LF is the left-derived Frobenius functor, given by

$$\text{LF}(X) \cong \cdots \rightarrow R^m \xrightarrow{(a_{ij})^p} R^n \rightarrow \cdots.$$
Assume that R is complete of prime characteristic p and with perfect residue field. Let $X, Y \in \text{D}^f(R)$ with $\text{Supp } X \cap \text{Supp } Y = \{m\}$, $X \in \text{P}^f(R)$ and $\dim(\text{Supp } X) + \dim(\text{Supp } Y) \leq \dim R$. The Dutta multiplicity of X and Y is defined as

$$\chi_{\infty}(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim}(\text{Supp } X)} \chi(\text{LF}^e(X), Y),$$

where LF is the left-derived Frobenius functor, given by

$$\text{LF}(X) \cong \cdots \longrightarrow R^m (a_{ij}^p) \longrightarrow R^n \longrightarrow \cdots.$$

The Dutta multiplicity satisfies vanishing.
Let C be a full subcategory of the category of finite complexes.
Let C be a full subcategory of the category of finite complexes. The Grothendieck group of C is the Abelian group $K_0(C)$ presented by generators $[X]$, one for each isomorphism class of a complex X in C, and relations

$$[X] = 0$$

whenever X is exact

$$[X] = [X'] + [X'']$$

whenever $0 \rightarrow X' \rightarrow X \rightarrow X'' \rightarrow 0$ is a short exact sequence in C.
Let C be a full subcategory of the category of finite complexes. The Grothendieck group of C is the Abelian group $K_0(C)$ presented by generators $[X]$, one for each isomorphism class of a complex X in C, and relations

$$[X] = 0 \quad \text{whenever } X \text{ is exact}$$

$$[X] = [X'] + [X''] \quad \text{whenever } 0 \to X' \to X \to X'' \to 0 \text{ is a short exact sequence in } C.$$

Since $\chi(-, Y)$ is zero on exact complexes and additive on short exact sequences, it factors through a Grothendieck group.
Let C be a full subcategory of the category of finite complexes. The Grothendieck group of C is the Abelian group $K_0(C)$ presented by generators $[X]$, one for each isomorphism class of a complex X in C, and relations

$$[X] = 0$$
whenver X is exact

$$[X] = [X'] + [X'']$$
whenever $0 \rightarrow X' \rightarrow X \rightarrow X'' \rightarrow 0$ is a short exact sequence in C.

Since $\chi(-, Y)$ is zero on exact complexes and additive on short exact sequences, it factors through a Grothendieck group. We can compute

$$\chi(X, Y)$$
Let C be a full subcategory of the category of finite complexes. The Grothendieck group of C is the Abelian group $K_0(C)$ presented by generators $[X]$, one for each isomorphism class of a complex X in C, and relations

$$[X] = 0$$
whenever X is exact

$$[X] = [X'] + [X'']$$
whenever $0 \to X' \to X \to X'' \to 0$ is a short exact sequence in C.

Since $\chi(-, Y)$ is zero on exact complexes and additive on short exact sequences, it factors through a Grothendieck group. We can compute

$$\chi(X, Y) = \chi([X], Y)$$
Grothendieck Groups

Let C be a full subcategory of the category of finite complexes. The Grothendieck group of C is the Abelian group $K_0(C)$ presented by generators $[X]$, one for each isomorphism class of a complex X in C, and relations

\[
[X] = 0 \quad \text{whenever } X \text{ is exact}
\]

\[
[X] = [X'] + [X''] \quad \text{whenever } 0 \to X' \to X \to X'' \to 0 \\
\text{is a short exact sequence in } C.
\]

Since $\chi(-, Y)$ is zero on exact complexes and additive on short exact sequences, it factors through a Grothendieck group. We can compute

\[
\chi(X, Y) = \chi([X], Y) = \chi([X'], Y)
\]
Let C be a full subcategory of the category of finite complexes. The Grothendieck group of C is the Abelian group $K_0(C)$ presented by generators $[X]$, one for each isomorphism class of a complex X in C, and relations

$$[X] = 0 \quad \text{whenever } X \text{ is exact}$$
$$[X] = [X'] + [X''] \quad \text{whenever } 0 \rightarrow X' \rightarrow X \rightarrow X'' \rightarrow 0 \text{ is a short exact sequence in } C.$$

Since $\chi(-, Y)$ is zero on exact complexes and additive on short exact sequences, it factors through a Grothendieck group. We can compute

$$\chi(X, Y) = \chi([X], Y) = \chi([X'], Y) = \chi(X', Y).$$
We can also compute

\(\chi_{\infty}(X, Y) \)
We can also compute

\[\chi_\infty(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim}(\text{Supp } X)} \chi([LF^e(X)], Y) \]

where \([LF^e(X)] \in K_0(C)\).
We can also compute

\[\chi_\infty(X, Y) = \lim_{e \to \infty} \frac{1}{pe \operatorname{codim}(\text{Supp} X)} \chi([LF^e(X)], Y) \]

\[= \lim_{e \to \infty} \chi(\frac{1}{pe \operatorname{codim}(\text{Supp} X)} [LF^e(X)], Y) \]

where \(p^{-e \operatorname{codim}(\text{Supp} X)} [LF^e(X)] \in K_0(C) \otimes_{\mathbb{Z}} \mathbb{Q} \).
We can also compute

\[
\chi_\infty(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \operatorname{codim}(\operatorname{Supp}X)} \chi([L^eF(X)], Y)
\]

\[
= \lim_{e \to \infty} \chi(\frac{1}{p^e \operatorname{codim}(\operatorname{Supp}X)} [L^eF(X)], Y)
\]

\[
= \chi(\lim_{e \to \infty} \frac{1}{p^e \operatorname{codim}(\operatorname{Supp}X)} [L^eF(X)], Y)
\]

where ???
Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$.
Let \mathcal{X} be a specialization-closed subset of Spec R: that is,

$$p \in \mathcal{X} \quad \text{and} \quad p \subseteq q \quad \text{implies} \quad q \in \mathcal{X}. $$
Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$: that is,

$$p \in \mathcal{X} \quad \text{and} \quad p \subseteq q \quad \text{implies} \quad q \in \mathcal{X}.$$

Define

$$D^{f}_{\square}(\mathcal{X}) = \text{the full subcategory of } D^{f}_{\square}(R) \text{ of complexes with support contained in } \mathcal{X}.$$
Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$: that is,

$$p \in \mathcal{X} \text{ and } p \subseteq q \text{ implies } q \in \mathcal{X}.$$

Define

- $D^{\square}_f(\mathcal{X}) = \text{ the full subcategory of } D^{\square}_f(R) \text{ of complexes with support contained in } \mathcal{X}.$

- $P^f(\mathcal{X}) = \text{ the full subcategory of } P^f(R) \text{ of complexes with support contained in } \mathcal{X}.$
Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$: that is,

$$p \in \mathcal{X} \quad \text{and} \quad p \subseteq q \quad \text{implies} \quad q \in \mathcal{X}.$$

Define

- $D^f_\square(\mathcal{X}) = \text{the full subcategory of } D^f_\square(R) \text{ of complexes with support contained in } \mathcal{X}.$

- $P^f(\mathcal{X}) = \text{the full subcategory of } P^f(R) \text{ of complexes with support contained in } \mathcal{X}.$

Let \mathcal{X}^c denote the maximal subset of $\text{Spec } R$ such that

$$\mathcal{X} \cap \mathcal{X}^c = \{m\} \quad \text{and} \quad \dim \mathcal{X} + \dim \mathcal{X}^c \leq \dim R.$$
Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$.
Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$. The Grothendieck space of $\mathcal{P}^f(\mathcal{X})$ is the \mathbb{Q}-vector space $G\mathcal{P}^f(\mathcal{X})$ presented by generators $[X]$, one for each isomorphism class of a complex X in $\mathcal{P}^f(\mathcal{X})$, and relations

$$[X] = [X'] \text{ when } \chi(X, -) = \chi(X', -)$$

as metafunctions $D^f_{\square}(\mathcal{X}^c) \to \mathbb{Q}$.
Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$. The Grothendieck space of $\mathcal{P}^f(\mathcal{X})$ is the \mathbb{Q}-vector space $\mathcal{G}\mathcal{P}^f(\mathcal{X})$ presented by generators $[X]$, one for each isomorphism class of a complex X in $\mathcal{P}^f(\mathcal{X})$, and relations

$$[X] = [X'] \quad \text{when} \quad \chi(X, -) = \chi(X', -)$$

as metafunctions $D^f_{\Box}(\mathcal{X}^c) \to \mathbb{Q}$.

The space $\mathcal{G}\mathcal{P}^f(\mathcal{X})$ is equipped with the initial topology of the family of \mathbb{Q}-linear maps

$$\chi(-, Y): \mathcal{G}\mathcal{P}^f(\mathcal{X}) \to \mathbb{Q} \quad \text{for} \quad Y \in D^f_{\Box}(\mathcal{X}^c).$$
Now we can calculate . . .
Now we can calculate

\[\chi_\infty(X, Y) \]
Now we can calculate

\[\chi_{\infty}(X, Y) = \lim_{e \to \infty} \frac{1}{pe \codim \mathfrak{X}} \chi([LF^e(X)], Y) \]

where \(\mathfrak{X} = \text{Supp } X \).
Now we can calculate

\[\chi_\infty(X, Y) = \lim_{e \to \infty} \frac{1}{pe \cdot \text{codim } \mathfrak{X}} \chi([LF^e(X)], Y) \]

\[= \lim_{e \to \infty} \chi(\frac{1}{pe \cdot \text{codim } \mathfrak{X}}[LF^e(X)], Y) \]

where \(\mathfrak{X} = \text{Supp } X \).
Now we can calculate

\[\chi_\infty(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim } \mathcal{X}} \chi([LF^e(X)], Y) \]

\[= \lim_{e \to \infty} \chi\left(\frac{1}{p^e \text{codim } \mathcal{X}} \left[LF^e(X) \right], Y \right) \]

\[= \lim_{e \to \infty} \chi\left(\frac{1}{p^e \text{codim } \mathcal{X}} F^e_{\mathcal{X}}([X]), Y \right) \]

where \(\mathcal{X} = \text{Supp } X \) and \(F^e_{\mathcal{X}}([X]) = [LF^e(X)] \).
Now we can calculate

\[
\chi_\infty(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim } \mathcal{X}} \chi([LF^e(X)], Y)
\]

\[
= \lim_{e \to \infty} \chi(\frac{1}{p^e \text{codim } \mathcal{X}}[LF^e(X)], Y)
\]

\[
= \lim_{e \to \infty} \chi(\frac{1}{p^e \text{codim } \mathcal{X}}F^e_{\mathcal{X}}([X]), Y)
\]

\[
= \lim_{e \to \infty} \chi(\Phi^e_{\mathcal{X}}([X]), Y)
\]

where \(\mathcal{X} = \text{Supp } X \) and \(\Phi^e_{\mathcal{X}} = p^{-e \text{codim } \mathcal{X}}F^e_{\mathcal{X}} \).
Now we can calculate

$$\chi_\infty(X, Y) = \lim_{e \to \infty} \frac{1}{p^e \text{codim} \mathcal{X}} \chi([LF^e(X)], Y)$$

$$= \lim_{e \to \infty} \chi(\frac{1}{p^e \text{codim} \mathcal{X}}[LF^e(X)], Y)$$

$$= \lim_{e \to \infty} \chi(\frac{1}{p^e \text{codim} \mathcal{X}}F^e(\mathcal{X}), Y)$$

$$= \lim_{e \to \infty} \chi(\Phi^e\mathcal{X}([X]), Y)$$

$$= \chi(\lim_{e \to \infty} \Phi^e\mathcal{X}([X]), Y)$$

where $\mathcal{X} = \text{Supp } X$ and $\lim_{e \to \infty} \Phi^e\mathcal{X}([X]) \in \mathcal{G}P^f(\mathcal{X})$.
Theorem 1. Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$ and let $\alpha \in \mathcal{G}^{f}(\mathcal{X})$.
Theorem 1. Let \mathfrak{X} be a specialization-closed subset of $\text{Spec } R$ and let $\alpha \in \mathcal{G} \mathcal{P}^f(\mathfrak{X})$. Then there is a unique decomposition

$$\alpha = \alpha^{(0)} + \cdots + \alpha^{(u)}$$

in which each $\alpha^{(i)}$ is either zero or an eigenvector for $\Phi_\mathfrak{X}$ with eigenvalue p^{-i}.
Theorem 1. Let \mathfrak{X} be a specialization-closed subset of $\text{Spec } R$ and let $\alpha \in \mathsf{GP}_f(\mathfrak{X})$. Then there is a unique decomposition

$$\alpha = \alpha^{(0)} + \cdots + \alpha^{(u)}$$

in which each $\alpha^{(i)}$ is either zero or an eigenvector for $\Phi_{\mathfrak{X}}$ with eigenvalue p^{-i}. The components $\alpha^{(0)}, \ldots, \alpha^{(u)}$ are recursively defined by

$$\alpha^{(0)} = \lim_{e \to \infty} \Phi_{\mathfrak{X}}^e(\alpha) \quad \text{and}$$

$$\alpha^{(i)} = \lim_{e \to \infty} p^{ie} \Phi_{\mathfrak{X}}^e(\alpha - (\alpha^{(0)} + \cdots + \alpha^{(i-1)})),$$
...and there is a formula

\[
\begin{pmatrix}
\alpha^{(0)} \\
\vdots \\
\alpha^{(u)}
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & p^{-1} & \cdots & p^{-u} \\
\vdots & \vdots & \ddots & \vdots \\
1 & p^{-u} & \cdots & p^{-u^2}
\end{pmatrix}^{-1}
\begin{pmatrix}
\alpha \\
\Phi \chi(\alpha) \\
\vdots \\
\Phi_u \chi(\alpha)
\end{pmatrix}.
\]
...and there is a formula

\[
\begin{pmatrix}
\alpha^{(0)} \\
\vdots \\
\alpha^{(u)}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 & \ldots & 1 \\
1 & p^{-1} & \ldots & p^{-u} \\
\vdots & \vdots & \ddots & \vdots \\
1 & p^{-u} & \ldots & p^{-u^2}
\end{pmatrix}^{-1}
\begin{pmatrix}
\alpha \\
\Phi_x(\alpha) \\
\vdots \\
\Phi_x^u(\alpha)
\end{pmatrix}.
\]

The number \(u \) is the **vanishing dimension** of \(\alpha \); it measures, in a sense, how far \(\alpha \) is from satisfying vanishing. In particular, \(\alpha \) satisfies vanishing if and only if \(\alpha = \alpha^{(0)} \).
… and there is a formula

\[
\begin{pmatrix}
\alpha^{(0)} \\
\vdots \\
\alpha^{(u)}
\end{pmatrix} = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & p^{-1} & \cdots & p^{-u} \\
\vdots & \vdots & \cdots & \vdots \\
1 & p^{-u} & \cdots & p^{-u^2}
\end{pmatrix}^{-1}
\begin{pmatrix}
\alpha \\
\Phi_{\mathcal{X}}(\alpha) \\
\vdots \\
\Phi_{\mathcal{X}}^u(\alpha)
\end{pmatrix}.
\]

The number \(u \) is the vanishing dimension of \(\alpha \); it measures, in a sense, how far \(\alpha \) is from satisfying vanishing. In particular, \(\alpha \) satisfies vanishing if and only if \(\alpha = \alpha^{(0)} \).

We have \(u \leq \max(\text{codim } \mathcal{X} - 2, 0) \).
Translating the theorem to complexes, the Dutta multiplicity $\chi_\infty(X, Y)$ can be computed.
Translating the theorem to complexes, the Dutta multiplicity \(\chi_\infty(X, Y) \) is the first entry in

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 \\
p^t & p^{t-1} & \ldots & p^{t-u} \\
\vdots & \vdots & \ddots & \vdots \\
p^{u(t)} & p^{u(t-1)} & \ldots & p^{u(t-u)}
\end{pmatrix}
\begin{pmatrix}
\chi(X, Y) \\
\chi(LF(X), Y) \\
\vdots \\
\chi(LF^u(X), Y)
\end{pmatrix}
\]

where \(t = \text{codim}(\text{Supp } X) \).
NUMERICAL PROPERTIES

Assume that R is complete of prime characteristic p and with perfect residue field.
Assume that R is complete of prime characteristic p and with perfect residue field. Let \mathfrak{X} be a specialization-closed subset of $\text{Spec } R$ and let $\alpha \in \text{GP}^f(\mathfrak{X})$.
Assume that R is complete of prime characteristic p and with perfect residue field. Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$ and let $\alpha \in \mathbb{G}P^f(\mathcal{X})$. If $\chi(\alpha, Y) = \chi(\alpha^{(0)}, Y)$ for all $Y \in \mathbb{P}^f(\mathcal{X}^c)$, then α satisfies numerical vanishing.
Assume that R is complete of prime characteristic p and with perfect residue field. Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$ and let $\alpha \in \text{GP}^f(\mathcal{X})$. If $\chi(\alpha, Y) = \chi(\alpha^{(0)}, Y)$ for all $Y \in \text{P}^f(\mathcal{X}^c)$, then α satisfies numerical vanishing. If this holds for all elements in all Grothendieck spaces, then R satisfies numerical vanishing.
Assume that R is complete of prime characteristic p and with perfect residue field. Let \mathcal{X} be a specialization-closed subset of $\text{Spec } R$ and let $\alpha \in \mathbb{G}^f(\mathcal{X})$. If
$\chi(\alpha, Y) = \chi(\alpha^{(0)}, Y)$ for all $Y \in \mathbb{P}^f(\mathcal{X}^c)$, then α satisfies numerical vanishing. If this holds for all elements in all Grothendieck spaces, then R satisfies numerical vanishing.

Theorem 2. The ring R satisfies numerical vanishing if and only if all elements of $\mathbb{G}^f(\{m\})$ do.
Assume that R is complete of prime characteristic p and with perfect residue field. Let \mathcal{X} be a specialization-closed subset of $\text{Spec} \ R$ and let $\alpha \in \text{GP}^f(\mathcal{X})$. If $\chi(\alpha, Y) = \chi(\alpha^{(0)}, Y)$ for all $Y \in \text{P}^f(\mathcal{X}^c)$, then α satisfies numerical vanishing. If this holds for all elements in all Grothendieck spaces, then R satisfies numerical vanishing.

Theorem 2. The ring R satisfies numerical vanishing if and only if all elements of $\text{GP}^f(\{m\})$ do. In particular, this holds if and only if

$$\chi(\text{LF}(Z)) = p^{\dim R} \chi(Z)$$

for all complexes Z in $\text{P}^f(\{m\})$.
The duality functor $\mathbf{R} \text{Hom}_R(-, R)$ on $\mathcal{P}^f(\mathcal{X})$ induces an automorphism $(-)^*$ on $\mathcal{G} \mathcal{P}^f(\mathcal{X})$.
The duality functor $\mathbf{R}\text{Hom}_R(-, R)$ on $\mathcal{P}^f(\mathcal{X})$ induces an automorphism $(-)^*$ on $\mathcal{GP}^f(\mathcal{X})$.

An element $\alpha \in \mathcal{GP}^f(\mathcal{X})$ is self-dual if it satisfies $\alpha = (-1)^{\text{codim} \mathcal{X}} \alpha^*$.
The duality functor $\mathbf{RHom}_R(-, R)$ on $\mathcal{P}^f(\mathcal{X})$ induces an automorphism $(-)^*$ on $\mathcal{G}^f(\mathcal{X})$.

An element $\alpha \in \mathcal{G}^f(\mathcal{X})$ is self-dual if it satisfies
\[\alpha = (-1)^{\text{codim } \mathcal{X}} \alpha^*,\]
and α is \textbf{numerically self-dual} if it satisfies
\[\chi(\alpha, Y) = (-1)^{\text{codim } \mathcal{X}} \chi(\alpha^*, Y)\]
for all $Y \in \mathcal{P}^f(\mathcal{X}^c)$.
The duality functor $\mathbf{R} \text{Hom}_R(-, R)$ on $\mathcal{P}^f(\mathcal{X})$ induces an automorphism $(-)^*$ on $\mathcal{GP}^f(\mathcal{X})$.

An element $\alpha \in \mathcal{GP}^f(\mathcal{X})$ is self-dual if it satisfies $\alpha = (-1)^{\text{codim} \mathcal{X}} \alpha^*$, and α is numerically self-dual if it satisfies $\chi(\alpha, Y) = (-1)^{\text{codim} \mathcal{X}} \chi(\alpha^*, Y)$ for all $Y \in \mathcal{P}^f(\mathcal{X}^c)$. If this holds for all elements in all Grothendieck spaces, then R satisfies self-duality or numerical self-duality, respectively.
The duality functor $\mathbf{RHom}_R(\cdot, R)$ on $\mathbb{P}^f(\mathcal{X})$ induces an automorphism $(-)^*$ on $\mathbb{GP}^f(\mathcal{X})$.

An element $\alpha \in \mathbb{GP}^f(\mathcal{X})$ is self-dual if it satisfies $\alpha = (-1)^{\text{codim} \mathcal{X}} \alpha^*$, and α is numerically self-dual if it satisfies $\chi(\alpha, Y) = (-1)^{\text{codim} \mathcal{X}} \chi(\alpha^*, Y)$ for all $Y \in \mathbb{P}^f(\mathcal{X}^c)$. If this holds for all elements in all Grothendieck spaces, then R satisfies self-duality or numerical self-duality, respectively.

Theorem 3 (w. Frankild). *When R is complete of prime characteristic p and with perfect residue field,*

$$(-1)^{\text{codim} \mathcal{X}} \alpha^* = \alpha^{(0)} - \alpha^{(1)} + \cdots + (-1)^u \alpha^{(u)}.$$
vanishing

weak vanishing
vanishing

weak vanishing
self-duality

vanishing

weak vanishing
self-duality

\[\iff \]

vanishing

\[\iff \]

numerical self-duality

\[\iff \]

weak vanishing
Ring properties

self-duality

regular \rightarrow vanishing

numerical self-duality

weak vanishing
RING PROPERTIES

self-duality

regular \rightarrow \text{vanishing} \leftarrow \text{dim } \leq 2

numerical self-duality

weak vanishing
RING PROPERTIES

self-duality

\[\iff \]

regular \[\implies \] vanishing \[\iff \] dim \(\leq 2 \)

\[\implies \]

complete intersection

\[\downarrow \]

numerical self-duality

\[\downarrow \]

weak vanishing
RING PROPERTIES

self-duality

regular \rightarrow vanishing \leftarrow \text{dim} \leq 2

complete intersection

numerical self-duality

weak vanishing
RING PROPERTIES

self-duality

regular \rightarrow \text{vanishing} \leftarrow \text{dim} \leq 2

\text{complete intersection}

\text{numerical self-duality}

\text{weak vanishing} \leftarrow \text{dim} \leq 4
RING PROPERTIES

self-duality

regular \rightarrow \text{vanishing} \leftarrow \text{dim} \leq 2

\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

complete intersection

numerical self-duality

\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

Gorenstein of dim \leq 5

\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

weak vanishing \leftrightarrow \text{dim} \leq 4
RING PROPERTIES

self-duality

regular

vanishing

dim \leq 2

complete intersection

numerical vanishing

numerical self-duality

Gorenstein of dim \leq 5

weak vanishing

dim \leq 4
RING PROPERTIES

self-duality

regular \rightarrow \text{vanishing} \leftarrow \text{dim} \leq 2

complete intersection \rightarrow \text{numerical vanishing}

numerical self-duality \leftarrow \text{Gorenstein of dim} \leq 5

weak vanishing \leftarrow \text{dim} \leq 4
Ring properties

self-duality

regular \quad \Rightarrow \quad \text{vanishing} \quad \iff \quad \text{dim} \leq 2

complete intersection \quad \Rightarrow \quad \text{numerical vanishing} \quad \iff \quad \text{Gorenstein of dim} \leq 3

\quad \Rightarrow \quad \text{numerical self-duality} \quad \iff \quad \text{Gorenstein of dim} \leq 5

\quad \Rightarrow \quad \text{weak vanishing} \quad \iff \quad \text{dim} \leq 4
RING PROPERTIES

self-duality

regular \rightarrow \text{vanishing} \iff \dim \leq 2

complete intersection \rightarrow \text{numerical vanishing} \leftarrow \text{Gorenstein of dim} \leq 3

Gorenstein \rightarrow \text{numerical self-duality} \leftarrow \text{Gorenstein of dim} \leq 5

Gorenstein \rightarrow \text{weak vanishing} \iff \dim \leq 4
RING PROPERTIES

self-duality

regular \rightarrow vanishing \leftrightarrow \text{dim } \leq 2

complete intersection \rightarrow numerical vanishing \leftrightarrow \text{dim } \leq 3

Gorenstein \rightarrow numerical self-duality \leftrightarrow \text{Gorenstein of dim } \leq 5

Cohen–Macaulay \rightarrow \text{weak vanishing } \leftrightarrow \text{dim } \leq 4
RING PROPERTIES

self-duality

regular \iff vanishing \iff \text{dim} \leq 2

complete intersection \iff numerical vanishing \iff Gorenstein of \text{dim} \leq 3

Gorenstein = = = = = \iff numerical self-duality \iff Gorenstein of \text{dim} \leq 5

Cohen–Macaulay \iff weak vanishing \iff \text{dim} \leq 4