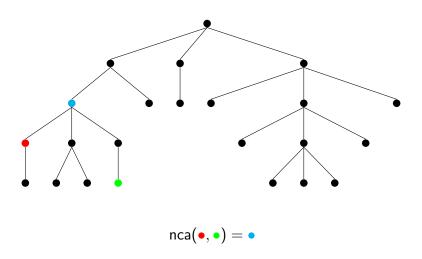
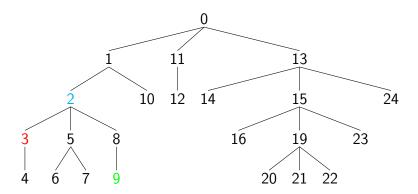
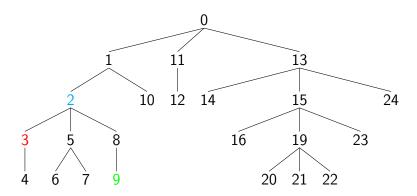

Near-optimal labeling schemes for nearest common ancestors

Stephen Alstrup* *Esben Bistrup Halvorsen** Kasper Green Larsen[†]

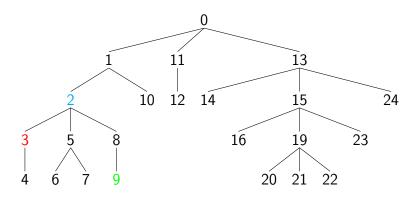
* Department of Computer Science, University of Copenhagen, Denmark

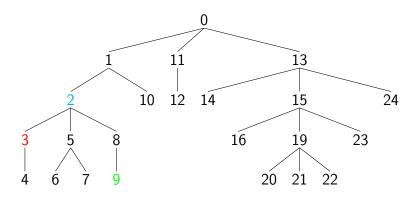

† MADALGO, Department of Computer Science, Aarhus University, Denmark


Nearest common ancestor (NCA)



Nearest common ancestor (NCA)





 $I(\bullet) = (0, 1, 2, 3)$ $I(\bullet) = (0, 1, 2, 8, 9)$ $I(\bullet) = (0, 1, 2)$

$$l(\bullet) = (0, 1, 2, 3)$$
 $l(\bullet) = (0, 1, 2, 8, 9)$ $l(\bullet) = (0, 1, 2)$
max $|l(v)| = O(n \log n)$

 $l(\bullet) = (0, 1, 2, 3)$ $l(\bullet) = (0, 1, 2, 8, 9)$ $l(\bullet) = (0, 1, 2)$ Objective: minimize max |l(v)|

Algorithms to compute NCAs

Algorithms to compute NCAs

• different settings (static, dynamic,...)

Algorithms to compute NCAs

- different settings (static, dynamic,...)
- different computational models (RAM-model, pointer model, ...)

Algorithms to compute NCAs

- different settings (static, dynamic,...)
- different computational models (RAM-model, pointer model, ...)
- different applications in mind (computational biology, XML, routing, ...)

Algorithms to compute NCAs*

- different settings (static, dynamic,...)
- different computational models (RAM-model, pointer model, ...)
- different applications in mind (computational biology, XML, routing, ...)

* see survey by Alstrup, Gavoille, Kaplan, Rauhe (TOCS, 2004)

Labeling schemes

• adjacency, ancestry, distance, routing, NCA,

- adjacency, ancestry, distance, routing, NCA, ...
- static/dynamic

- adjacency, ancestry, distance, routing, NCA, ...
- static/dynamic
- approximate

- adjacency, ancestry, distance, routing, NCA, ...
- static/dynamic
- approximate
- probabilistic

Labeling schemes*

- adjacency, ancestry, distance, routing, NCA, ...
- static/dynamic
- approximate
- probabilistic

* see survey by Gavoille, Peleg (Dist. Comp., 2003)

Harel, Tarjan (Siam J. Computing, 1984):

NCAs in constant time with linear preprocessing time. (Includes a labeling scheme for complete binary trees.)

Kannan, Naor, Rudich (STOC, 1988): Adjacency and ancestry labeling schemes.

7 — Alstrup, Halvorsen, Larsen — Near-optimal labeling schemes for nearest common ancestors — January 6, 2014

Alstrup, Gavoille, Kaplan, Rauhe (TOCS, 2004): NCA labeling scheme with label size $10 \log n$.

Previous work

Fischer (ESA, 2009):

Experimental results with label size $8 \log n$.

Alstrup, Bille, Rauhe (Siam J. Discrete Math., 2005): NCA labeling schemes have label size $\log n + \Omega(\log \log n)$.

Fraigniaud, Korman (STOC, 2010): Ancestor labeling schemes of $\log n + \Theta(\log \log n)$

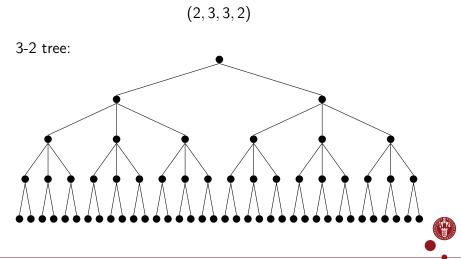
11 — Alstrup, Halvorsen, Larsen — Near-optimal labeling schemes for nearest common ancestors — January 6, 2014

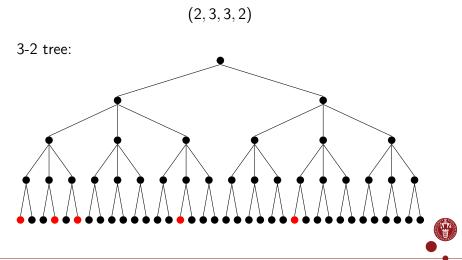
Alstrup, Halvorsen, Larsen (SODA, 2014):

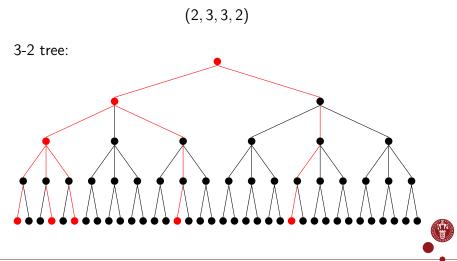
Upper bound of 2.772 log n (and 2.585 log n for binary trees). Efficient upper bound of 3 log n. Lower bound of 1.008 log n.

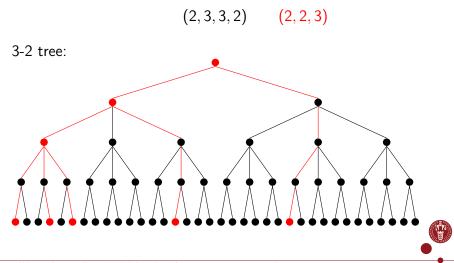
Labels have size $(2 \pm \epsilon) \log n$, $\epsilon < 1$.

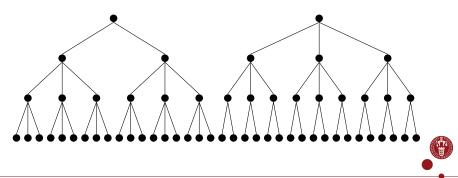
• Separates NCA from ancestry


- Separates NCA from ancestry
- First lower bound of log n + ω(log log n) for non-distance labeling schemes for trees



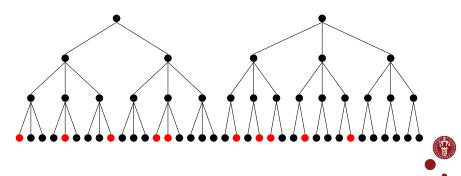

- Separates NCA from ancestry
- First lower bound of log n + ω(log log n) for non-distance labeling schemes for trees
- More efficient than previous experimental results


- Separates NCA from ancestry
- First lower bound of log n + ω(log log n) for non-distance labeling schemes for trees
- More efficient than previous experimental results
- Total space comparable to "normal" NCA algorithms



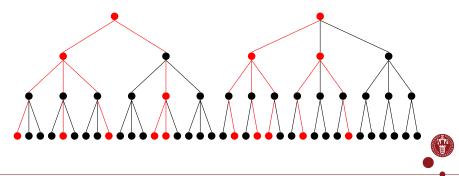
3-2 sequences:

$$(2,3,3)$$
 $(3,3,2)$


3-2 trees:

3-2 sequences:

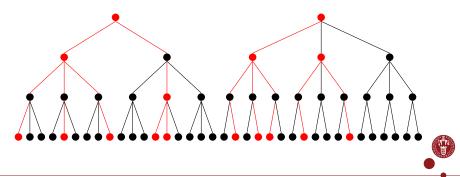
$$(2,3,3)$$
 $(3,3,2)$


3-2 trees:

3-2 sequences:

$$(2,3,3)$$
 $(3,3,2)$

3-2 trees:



15 — Alstrup, Halvorsen, Larsen — Near-optimal labeling schemes for nearest common ancestors — January 6, 2014

3-2 sequences:

(2,3,3) (2,3) (3,3,2)

3-2 trees:

15 — Alstrup, Halvorsen, Larsen — Near-optimal labeling schemes for nearest common ancestors — January 6, 2014

{(3-2)-sequences with pairwise distance > h} $\begin{cases} 1-1 \\ 1-1 \end{cases}$ {(3-2)-trees with pairwise fewer than *m* labels in common}

{(3-2)-sequences with pairwise distance > h} $\begin{pmatrix} 1-1 \\ 1-1 \\ (3-2)-\text{trees with pairwise fewer than } m \text{ labels in common} \end{cases}$

$$\implies$$
 [...,math, math, math,...]

{(3-2)-sequences with pairwise distance
$$> h$$
}

 $\{(3-2)$ -trees with pairwise fewer than m labels in common $\}$

$$\implies [\dots, math, math, math, \dots]$$
$$\implies |\{labels\}| \ge n^{1.008}$$

{(3-2)-sequences with pairwise distance
$$> h$$
}

 $\{(3-2)$ -trees with pairwise fewer than m labels in common $\}$

$$\implies [\dots, math, math, math, \dots]$$
$$\implies |\{labels\}| \ge n^{1.008}$$
$$\implies labels have worst-case size 1.008 \log n$$

Future studies

• Tighter bounds than $> 1.008 \log n$ and $< 2.772 \log n$.

Future studies

- Tighter bounds than $> 1.008 \log n$ and $< 2.772 \log n$.
- Time-efficient version

Future studies

- Tighter bounds than $> 1.008 \log n$ and $< 2.772 \log n$.
- Time-efficient version
- Dynamic, probabilistic, ...

Thanks!

18 — Alstrup, Halvorsen, Larsen — Near-optimal labeling schemes for nearest common ancestors — January 6, 2014