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Preface

This bachelor thesis concentrates on proving the famous Banach–Tarski para-
dox and Tarski’s theorem, and is a result of 4 months of work under the adept
guidance of our adviser, Mikael Rørdam. We intend that students at the final
stages of an undergraduate study in mathematics can read and understand the
thesis. Our presentation presupposes acquaintance with topology and elemen-
tary group theory. Furthermore, some knowledge of measure theory could ease
the conception of Tarski’s theorem.

The text is divided into three chapters. Chapter 1 introduces the concepts of
paradoxicality and free groups, which are necessary in our proofs of the Banach–
Tarski paradox and Tarski’s theorem. Furthermore, Chapter 1 includes a section
in which we investigate the free product of groups, which, although it is not
being used directly, is essentially what lies behind some of the proofs leading to
the Banach–Tarski paradox. Chapter 2 focuses on the Banach–Tarski paradox,
both in its original form and in an even stronger version. Chapter 3 extends some
of the ideas from the first chapter and proves Tarski’s theorem.

The basis for our work is the excellent book, The Banach–Tarski Paradox,
by Stan Wagon. Since many proofs in this book have either been omitted or
are very short, we have deepened Stan Wagon’s presentation. Furthermore, Stan
Wagon only superficially discusses the theory of free groups and we disagree with
his idea of this concept. We therefore had to reformulate some of the definitions
and theorems and, in some cases, had to construct new proofs.

Finally, we express our gratitude towards Mikael Rørdam for generously shar-
ing his sparse time with us and for his commitment to the process and to David
Jeffrey Breuer for editing the text.

Esben Bistrup Halvorsen
Lars Hougaard Hansen
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Introduction

Phenomena that seem counterintuitive at first sight appear in most aspects of
modern mathematics. Nearly all paradoxes in mathematics are connected with
the inconceivable concept of infinity, which throughout history has challenged the
minds of human beings. The idea, proposed by Cantor in the late 19th century,
that the difference in the cardinality of various infinite sets indicated that there
were actually several types of infinity, was originally met with great scepticism.
However, as time went by, mathematicians adjusted to this preposterous thought
and learned to accept (and maybe even love) the unfathomable features of the
infinite.

A source of manifold paradoxes is the intuitively acceptable axiom of choice,
which was originally formulated in the early 20th century by Zermelo.

The Axiom of Choice For every nonempty set M , there exists a mapping

u : P(M)\{∅} → M

such that
∀A ∈ P(M)\{∅} : u(A) ∈ A.

In this paper, theorems proved using the axiom of choice will be followed by
(AC). The axiom of choice plays an important role in proving some of the most
fundamental results in modern mathematics, such as Hahn–Banach’s theorem
and Tychonoff’s theorem, and in 1938 Gödel proved it to be consistent with
the Zermelo–Fraenkel axioms. However, the apparently harmless axiom leads to
paradoxes so absurd that one is easily tempted to reject it, and after Cohen’s
proof from 1963 that also the negated axiom of choice is consistent with the
Zermelo–Fraenkel axioms, the axiom has engendered a fundamental discussion in
the world of mathematics. One of the astounding consequences of the axiom of
choice is the Banach–Tarski paradox:

Theorem (The Banach–Tarski Paradox)(AC) There exists a partitioning of
the unit ball B into pieces A1, . . . , An, B1, . . . , Bm ⊆ R3 and isometries φ1, . . . , φn,
ψ1, . . . , ψm of R3, such that

B =
n⋃

i=1

φi(Ai) =
m⋃

j=1

ψj(Bj).

iii



Introduction iv

The paradoxical nature of the Banach–Tarski paradox is more apparent in its less
formal formulation: It is possible to cut an orange into a finite number of pieces
that can be rearranged to form two oranges with the same size as the original
one!

The Banach–Tarski paradox is formulated and proved here with the aid of
the theory of paradoxicality. The development of paradoxicality began with the
formalization of measure theory in the early 20th century. One of the first in-
stances of the use of a paradoxical decomposition is Vitali’s classical example
from 1905 of a non-Lebesgue measurable set. In 1915, Hausdorff proved the non-
existence of another type of measure by constructing a truly surprising paradox,
and this inspired some important work in the 1920s, such as the Banach–Tarski
paradox from 1924. The connection between paradoxicality and measure theory
is emphasized by Tarski’s theorem, which states that a necessary and sufficient
condition for the existence of a paradoxical decomposition of a set is the absence
of a finitely additive and invariant measure, normalizing the set.



Chapter 1

Paradoxicality and Free Groups

1.1 Paradoxical Actions

In order to prove the Banach–Tarski paradox, we need to formulate it in terms of
paradoxicality, which again is defined in the context of group actions. So recall
that a group G is said to act on a set X if there exists a mapping G×X → X,
denoted (g, x) 7→ g.x, such that for all g, h ∈ G and x ∈ X,

1.x = x (gh).x = g.(h.x),

where 1 is the neutral element of G. We shall by the orbit of x, where x ∈ X, be
referring to the set

G.x = {g.x | g ∈ G}.
Definition 1.1 Let G be a group acting on a set X and let E ⊆ X be a subset of
X. E is G-paradoxical (or paradoxical with respect to G) if there exist pairwise
disjoint subsets A1, . . . , An, B1, . . . , Bm of E and elements g1, . . . , gn, h1, . . . , hm ∈
G such that

E =
n⋃

i=1

gi.Ai =
m⋃

j=1

hj.Bj.

A group G is said to be paradoxical if it is G-paradoxical, where G acts on itself by
left multiplication. Even though the concept of paradoxicality may seem abstract,
a wide quantity of well-known examples satisfy the conditions in Definition 1.1.

Example 1.2 The even numbers E are paradoxical with respect to the group of
bijections on N. This can be realized by dividing E into classes, E1, E2, with
respect to congruence modulo 4. If we let O be the odd numbers, then, as |E1| =
|E| and |E2 ∪O| = |O|, there exist bijections, f1 : E1 → E and f2 : E2 ∪O → O.
By defining f : N→ N by

f(n) =

{
f1(n) for n ∈ E1

f2(n) for n ∈ E2 ∪O

1



Paradoxicality and Free Groups 2

we see that f is a bijection on N with f(E1) = E. Equivalently, one can define a
bijection g on N such that g(E2) = E. Hence,

E = f(E1) = g(E2).

Note that the axiom of choice is not involved in the above example, so the concept
of paradoxicality is not solely related to this. However, the most interesting cases
of paradoxicality are connnected to the axiom of choice.

With the aid of paradoxicality, we can now reformulate the Banach–Tarski
paradox:

Theorem 1.3 (The Banach–Tarski Paradox)(AC) The unit ball B in R3 is
SO3-paradoxical.

1

The paradoxicality of a group can, in a sense, be transferred to the set it acts on.
This is contained in the following theorem.

Theorem 1.4 (AC) Let G be a group that acts on the set X without nontrivial
fixed points (that is, g.x = x ⇔ g = 1). Then G is paradoxical if, and only if, X
is G-paradoxical.

Proof: Suppose A1, . . . , An, B1, . . . , Bm are disjoint subsets of G and G =⋃n
i=1 gi.Ai =

⋃m
j=1 hj.Bj, where g1, . . . , gn, h1, . . . , hm ∈ G. Letting u be the

choice function on X, we define M = {u(G.x) | x ∈ X}. If g.x = h.y for some
g, h ∈ G and x, y ∈ M , then, since y and x = (g−1h).y belong to the same orbit,
x = y. Furthermore, as the action of G on X has no nontrivial fixed points,
g.x = h.x implies that g = h. Hence, g.M ∩ h.M 6= ∅ leads to g = h, that is,
the sets g.M , g ∈ G, are pairwise disjoint. To see that X is covered by the sets,
suppose x0 ∈ X. Then there exists g ∈ G such that g.x0 = u(G.x0), and we find
that x0 = g−1.u(G.x0) ∈ g−1.M , so the sets g.M , g ∈ G partition X. Now, let

A′
i =

⋃
g∈Ai

g.M = Ai.M and B′
j =

⋃
g∈Bj

g.M = Bj.M

for i = 1, . . . , n and j = 1, . . . , m. Then, since A1, . . . , An, B1, . . . , Bm are pairwise
disjoint, so are A′

1, . . . , A
′
n, B′

1, . . . , B
′
m. Now we have

n⋃
i=1

gi.A
′
i =

n⋃
i=1

gi.(Ai.M)

= (
n⋃

i=1

giAi).M

= G.M

= X

1SOn denotes the group of isometries in Rn.
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Similarly, we obtain
⋃m

j=1 hj.B
′
j = X. Hence, X is G-paradoxical.

Conversely, suppose X is G-paradoxical by X =
⋃n

i=1 gi.Ai =
⋃m

j=1 hi.Bj and
consider, for some fixed x0 ∈ X, the orbit G.x0. Let

Ti = {g ∈ G | g.x0 ∈ Ai} and Sj = {g ∈ G | g.x0 ∈ Bj}

for i = 1, . . . , n and j = 1, . . . , m. Note that the sets are pairwise disjoint, since
they are the counterimages under the mapping g 7→ g.x0 of the disjoint Ai’s and
Bj’s. Since G.x0 =

⋃n
i=1(gi.Ai) ∩ G.x0, we find for any element g ∈ G, that

g.x0 = gi.y for some i and some y ∈ Ai. This implies that g−1
i g ∈ Ti, and we

conclude that g ∈ giTi. Hence, G =
⋃n

i=1 giTi. Similarly, G =
⋃m

j=1 hjSj, so G is
paradoxical.

¤

Note that the proof of the last implication does not require the assumption that
the action of G has no nontrivial fixed points, so we have actually proved that,
if there exists a set X such that X is G-paradoxical, then G is itself paradoxical.

The action of a group on itself obviously has no nontrivial fixed points. Con-
sequently, the action of a subgroup on the entire group has no nontrivial fixed
points. Theorem 1.4 now gives us:

Corollary 1.5 (AC) A group with a paradoxical subgroup is paradoxical.

An important tool in our proof of the Banach–Tarski paradox is Theorem 1.4, as
we shall attempt to find a paradoxical subgroup of SO3 that acts on the unit ball
B in R3.

1.2 Free Groups

The group we wish to use in creating the paradoxicality of B is a free group.
As the reader is not expected to be familiar with free groups, we introduce this
important concept.

Definition 1.6 A group G is said to be free on a subset S ⊆ G\{1} if any
element g ∈ G\{1} has a unique representation

g = y1y2 · · · yk, (1.1)

with yi ∈ 〈xi〉\{1}, xi ∈ S for i = 1, . . . , k and xj 6= xj+1 for j = 1, . . . , k − 1.

A group G is simply said to be free if it is free on a subset S ⊆ G\{1}. In this
case, S is said to freely generate G. We shall refer to the representation (1.1)
as a word, and y1, . . . , yk as the letters of the word. A set S as in Definition 1.6
is called a basis for G. It can be proved that all bases are equipotent; we can
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therefore define the rank of a free group as the cardinality of one of its bases.
Obviously, if two free groups G1, G2 have bases B1, B2 that are “isomorphic” in
the sense that there exists a bijection t : B1 → B2 with |t(x)| = |x| for all x ∈ B1,
then G1 and G2 are isomorphic by xn1

1 · · ·xnk
k 7→ t(x1)

n1 · · · t(xk)
nk .

Example 1.7 Suppose S = {σ, τ} is a basis for the free group G of rank 2.
Furthermore, suppose |σ| = |τ | = 2. Then the elements of G can be regarded as
words in σ and τ . According to the first and last letter, there will be four kinds
of words in G. Any product of two elements in G will produce either the identity
1 or an element written as in (1.1) after successive removal of identical adjacent
letters. The identity is also denoted the empty word.

Example 1.8 The fundamental group of any subset of the plane shaped like an
8 is a free group with a basis consisting of a loop traversing the upper circle and
a loop traversing the lower circle of the 8. Consequently, the group has rank 2
and generators of infinite order.

One of the simple examples of a paradoxical group is the free group of rank 2
with generators of infinite order. It is this group we need in order to create the
paradoxicality of the unit ball in R3.

Theorem 1.9 Suppose F is a free group of rank 2, and let S = {ρ, π} be a basis
for F . If |ρ| = |π| = ∞, then F is paradoxical.

Proof: Let, for λ ∈ {ρ, ρ−1, π, π−1}, W (λ) denote the set of words beginning
on the left with the letter λn, for some n ∈ N. Then W (ρ), W (ρ−1), W (π) and
W (π−1) are disjoint subsets of F and

F = W (ρ) ∪ ρW (ρ−1) = W (π) ∪ πW (π−1),

since, for example, all σ ∈ F\W (π) satisfy the criterion that π−1σ ∈ W (π−1).

¤

1.3 Free Product of Groups

From any two groups we can construct a free group called the free product.
Though the free product is not used directly here, it is essentially what lies behind
the forthcoming proof of the Hausdorff paradox, and we therefore introduce this
concept to provide greater insight.

Definition 1.10 Suppose G1 and G2 are groups. A free product of G1 and G2

is a group F with homomorphisms φ1 : G1 → F and φ2 : G2 → F , satisfying the
condition that for any group H and homomorphisms ψ1 : G1 → H and ψ2 : G2 →
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H, there exists one, and only one, homomorphism ξ : F → H, such that the
diagram below commutes.

G1φ1

vvlllllllllll ψ1

((RRRRRRRRRRR

F
ξ //____________ H

G2
φ2

hhRRRRRRRRRRR ψ2

66lllllllllll

(1.2)

The definition does not fulfil our ambition of the free product, since neither the
existence nor the uniqueness is apparent. The following propositions do the job.

Proposition 1.11 (uniqueness) Suppose F and K are free products of G1 and
G2. Then F and K are isomorphic.

Proof: Let φ1 and φ2 witness that F is a free product of G1 and G2 and
let λ1 and λ2 witness that K is a free product of G1 and G2. The hypothesis
postulates that there exist homomorphisms, ξ and κ, such that the following
diagrams commute.

G1φ1

vvlllllllllll λ1

((RRRRRRRRRRR

F
ξ //____________ K

G2
φ2

hhRRRRRRRRRRR λ2

66lllllllllll

G1
λ1

vvlllllllllll φ1

((RRRRRRRRRRR

K
κ //____________ F

G2
λ2

hhRRRRRRRRRRR φ2

66lllllllllll

This shows that κ ◦ ξ ◦ φi = κ ◦ λi = φi for i = 1, 2, that is, the diagram below
commutes.

G1φ1

vvlllllllllll φ1

((RRRRRRRRRRR

F
κ◦ξ //____________ F

G2
φ2

hhRRRRRRRRRRR φ2

66lllllllllll

Replacing the homomorphism κ◦ξ with the identity, idF , also makes the diagram
commute, and since F is a free product, this implies that κ ◦ ξ = idF . Similarly,
ξ ◦ κ = idK , and we conclude that F and K are isomorphic.

¤

Proposition 1.12 (existence) For any two groups G1 and G2, there exists a
free product.

Proof: Let F be the set of finite sequences (c1, . . . , cn), where the ci’s belong
to G1\{1} and G2\{1} alternately, and where n = 0 gives the empty sequence,
(). We inductively define a composition in F by ()() = (), ()(c1, . . . , cn) =
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(c1, . . . , cn)() = (c1, . . . , cn) and for a = (c1, . . . cn) and b = (d1, . . . , dm), where
n,m ≥ 1,

ab =





(c1, . . . , cn, d1, . . . , dm) if cn ∈ G1, d1 ∈ G2 or cn ∈ G2, d1 ∈ G1

(c1, . . . , cnd1, . . . , dm) if cn, d1 ∈ Gi, i = 1, 2, and cnd1 6= 1
(c1, . . . , cn−1)(d2, . . . , dm) if cn, d1 ∈ Gi, i = 1, 2, and cnd1 = 1

It is easily verified that F with the given composition is a group. Now, let
φ1 : G1 → F and φ2 : G2 → F be given by2 φi(1) = () and φi(g) = (g) for g ∈
Gi\{1}. If H is a group and ψi : Gi → H are homomorphisms, then ξ : F → H,
given by ξ(()) = 1 and

ξ((c1, . . . , cn)) =





ψ1(c1)ψ2(c2) · · ·ψ1(cn) if c1 ∈ G1 and cn ∈ G1

ψ1(c1)ψ2(c2) · · ·ψ2(cn) if c1 ∈ G1 and cn ∈ G2

ψ2(c1)ψ2(c2) · · ·ψ1(cn) if c1 ∈ G2 and cn ∈ G1

ψ2(c1)ψ2(c2) · · ·ψ2(cn) if c1 ∈ G2 and cn ∈ G2

is a homomorphism that makes diagram (1.2) commute. If ξ′ is any homomor-
phism making the diagram commute, then

ξ′((c1, . . . , cn)) = ξ′(φ1(c1)φ2(c2) · · ·φ1(cn))

= ξ′(φ1(c1))ξ
′(φ2(c2)) · · · ξ′(φ1(cn))

= ψ1(c1)ψ2(c2) · · ·ψ1(cn)

= ξ((c1, . . . , cn))

if c1, cn ∈ G1. Similarly, ξ′((c1, . . . , cn)) = ξ((c1, . . . , cn)) in the other cases of
c1 and cn, so ξ′ = ξ, that is, ξ is the only homomorphism making the diagram
commute. Hence, F is a free product of G1 and G2.

¤

The free product of G1 and G2 is denoted G1 ∗G2. The construction of the free
product in the above proof shows that G1 ∗G2 is a free group, as we can imagine
the sequences as being words. The group Z ∗ Z is therefore free and has a basis
consisting of two elements of infinite order. Consequently, Z ∗ Z is paradoxical
according to Theorem 1.9.

2to ease notation, we use the same symbols for the neutral elements in G1 and G2.



Chapter 2

Equidecomposability and the
Banach–Tarski Paradox

With the theory of free groups and paradoxicality well in place, we are now ready
to sketch our strategy in proving the Banach–Tarski paradox. As mentioned in
the previous chapter, our first goal is to find a paradoxical subgroup of SO3. This
leads to the Hausdorff paradox, which says that there exists a countable set D ⊆
S2 such that S2\D is SO3-paradoxical. Using the theory of equidecomposability,
the Hausdorff paradox implies that S2 is SO3-paradoxical. A simple consequence
of this is the Banach–Tarski paradox: B is SO3-paradoxical.

2.1 The Hausdorff Paradox

Our way of finding a paradoxical subgroup of SO3 could seem a little awkward.
We will pretend that a certain subgroup F of SO3 was sent to us from heaven.
To show that F is paradoxical, we want to use Theorem 1.9 and therefore need
to show that it is free. This will be done by considering an even larger subgroup
T of SO3 and showing that this is free. We will work our way backwards, and
commence by showing that T is free.

Lemma 2.1 There exist two rotations φ, ψ about axes through the origin in R3

that freely generate a subgroup T of SO3.

Proof: Let

ψ =



−1

2
−
√

3
2

0√
3

2
−1

2
0

0 0 1


 and φ =



− cos θ 0 sin θ

0 −1 0
sin θ 0 cos θ




where θ is chosen so that cos θ is transcendental. (This can be done since there
are only countably infinite algebraic numbers, and the image of cosine is [−1, 1].)
Note that ψ and φ are both rotations about axes through the origin and that

7
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ψ3 = φ2 = 1. We want to show that, if y = y1y2 · · · yn and z = z1z2 · · · zm are
words in {φ, ψ} and y = z, then n = m and yi = zi for i = 1, 2, . . . , n.

Let us first realize, that it suffices to show that no word written as in (1.1)
equals the identity 1. To see this, suppose that y = z, i.e. yz−1 = 1. Then
1 = y1y2 · · · ynz−1

m z−1
m−1 · · · z−1

1 . If either n 6= m or yi 6= zi for some i, then
by successive cancellation of adjacent letters (beginning at ynz

−1
1 ), we obtain a

nonempty word that equals the identity.
To show that no word written as in (1.1) is equal to the identity, we divide

the possible nonempty words into four types,

α = ψp1φψp2φ · · ·ψpnφ, β = φψp1φψp2 · · ·φψpn ,

γ = φψp1φψp2 · · ·ψpnφ, δ = ψp1φψp2φ · · ·φψpn ,

where pi ∈ {1, 2} for i = 1, . . . m. We consider the word φ as of type γ and the
word ψ as of type δ. To begin with, we consider words of type α. Notice that a
word of type α can be written in the form

α = σnσn−1 · · ·σ1,

where σi is either ψφ or ψ2φ. Computing these two expressions gives

σi =




1
2
cos θ ±

√
3

2
−1

2
sin θ

∓
√

3
2

cos θ 1
2

±
√

3
2

sin θ
sin θ 0 cos θ




for i = 1, . . . , n.
By induction on n, we now want to show that, if K = (0, 0, 1), then there

exist rational polynomials Pn−1, Qn−1 and Rn, with deg Pn−1 = deg Qn−1 = n− 1
and deg Rn = n, and with leading coefficients −1

2
(3

2
)n−1, ±1

2
(3

2
)n−1 and (3

2
)n−1

respectively, such that

σnσn−1 · · · σ1(K) = (sin θPn−1(cos θ),
√

3 sin θQn−1(cos θ), Rn(cos θ)).

For n = 1,
α(K) = σ1(K) = (−1

2
sin θ,±

√
3

2
sin θ, cos θ),

so we can choose P0(x) = −1
2
, Q0(x) = ±1

2
and R1(x) = x. Assume next that

the condition holds for n = m− 1. Then for n = m,

α(K) = σmσm−1 · · · σ1(K)

= σm(sin θPm−2(cos θ),
√

3 sin θQm−2(cos θ), Rm−1(cos θ))

= (sin θPm−1(cos θ),
√

3 sin θQm−1(cos θ), Rm(cos θ)),

where we (inductively) have defined the polynomials

Pm−1(x) = 1
2
xPm−2(x)± 3

2
Qm−2(x)− 1

2
Rm−1(x)

Qm−1(x) = ∓1
2
xPm−2(x) + 1

2
Qm−2(x)± 1

2
Rm−1

Rm(x) = (1− x2)Pm−2(x) + xRm−1(x)
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with leading coefficients

Pm−1 : 1
2
(−1

2
(3

2
)m−2)− 1

2
(3

2
)m−2 = −1

2
(3

2
)m−1

Qm−1 : ∓1
2
(−1

2
(3

2
)m−2)± 1

2
(3

2
)m−2 = ±1

2
(3

2
)m−1

Rm : 1
2
(3

2
)m−2 + (3

2
)m−2 = (3

2
)m−1

It follows further from this that the polynomials have the desired degrees, so
the result is true for n = m, and hence by induction for all n ∈ N. Now,
since cos θ is transcendental, we cannot have α(K) = K, as this would require
Rn(cos θ)− 1 = 0. We therefore conclude that α 6= 1.

Next assume that a word of type β is equal to 1. Then the word φβφ = φ1φ =
1 is of type α, which is a contradiction. So words of type β are also different from
1.

Assume now that δ = ψp1φψp2φ · · ·φψpm = 1, and that m is the smallest
positive integer for which this is true. Since ψ 6= 1, we have m > 1. If p1 = pm,
then

1 = ψ−p1δψp1 = φψp2 · · ·φψp1+pm

is a word of type β, since ψp1+pm = ψ2 or ψp1+pm = ψ4 = ψ; but we have already
shown that this is not possible. If p1 6= pm, then p1 + pm = 3. First consider
m > 3. Then

1 = φψpmδψp1φ = ψp2φ · · ·φψpm−1 ,

which contradicts the minimality of m. On the other hand, we cannot have
m = 2, because this would imply 1 = ψp2δψp1 = φ. The last possible case is
m = 3, but this gives 1 = φψp3δψp1φ = ψp2 . In all cases, 1 is not a word of type
δ.

Finally, γ = φψp1φψp2 . . . ψpmφ = 1 implies that φγφ = ψp1φψp2 . . . ψpm = 1
for m ≥ 1, that is, 1 is a word of type δ. As φ 6= 1 is obvious, we conclude that
all words of type γ are different from 1.

Hence, no word is equal to 1, and based on the introductory remarks we
conclude that ψ and φ freely generate a subgroup of SO3.

¤

Now that we have shown that T is a free subgroup of SO3, we can reveal that
our candidate for F is the set of words generated by x1 = ψφψ and x2 = φψφψφ.
It will then be shown that almost the entire unit sphere S2 is F -paradoxical and
therefore is SO3-paradoxical.

Theorem 2.2 (The Hausdorff Paradox)(AC) (AC) There exists a count-
able subset D of the unit sphere S2, such that S2\D is SO3-paradoxical.

Proof: Consider the two rotations x1 = ψφψ and x2 = φψφψφ. We claim that
x1 and x2 freely generate a subgroup F of T . Notice that xn

1 = ψφψ2 · · ·ψ2φψ
and xn

2 = φψφψ2 · · ·ψ2φψφ are nontrivial words in {φ, ψ} for all n ∈ N, so, since
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T is free on {φ, ψ}, x1 and x2 are of infinite order. Now, let F = {z1z2 · · · zk |
zi ∈ 〈x1〉 ∪ 〈x2〉}. It is obvious that F is a subgroup of T . To show that F is free
on {x1, x2}, as in the proof of Lemma 2.1, we only need to show that no word
writen as in (1.1) is equal to 1. So, to get a contradiction, assume that

1 = y1y2 · · · yk

is a word in {x1, x2}. Since any power of x1 begins and ends with a ψ and any
power of x2 begins and ends with a φ, the element y1y2 · · · yk is a nonempty word
in {φ, ψ}, which contradicts T being free on {φ, ψ}. We conclude that F is a free
group of rank 2 and has a basis of elements with infinite order; Theorem 1.9 now
yields that F is paradoxical. Let

D = {s ∈ S2 | ∃σ ∈ F\{1} : σ(s) = s}.
Since F\{1} only contains rotations about axes through the origin, each σ ∈
F\{1} has exactly two fixed points in S2. As F is countable, we conclude that
D is countable too. Now, since the action of F on S2\D is without nontrivial
fixed points, Theorem 1.4 shows that S2\D is F -paradoxical and therefore SO3-
paradoxical.

¤
Recalling the free product from the previous chapter, we see that F actually
is the free product Z ∗ Z and that T is Z2 ∗ Z3, since the free groups have
pairwise “isomorphic” bases (in the sense discussed on page 4). Therefore, the
above asserts that the paradoxical group Z ∗ Z is a subgroup of Z2 ∗ Z3, and
Corollary 1.5 says that Z2 ∗ Z3 is paradoxical as well.

2.2 Equidecomposability

The Hausdorff paradox ensures that S2 is almost paradoxical with respect to SO3.
To improve this result, we introduce the concept of equidecomposability, which
divides P(R3) into equivalence classes. We then prove that paradoxicality is a
class property and, finally, show that S2\D from Theorem 2.2 and S2 belong to
the same class.

Definition 2.3 Suppose the group G acts on a set X. Two subsets A,B ⊆ X
are said to be G-equidecomposable, and we write A ∼G B, if there exists a
partitioning A1, . . . , An of A and a partitioning B1, . . . , Bn of B and elements
g1, . . . , gn ∈ G, such that gi.Ai = Bi for i = 1, . . . , n.

Note that the function g : A → B, given by

g(x) =





g1.x for x ∈ A1
...

...
gn.x for x ∈ An

(2.1)
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is a bijection. On the other hand, if there exists a bijection in the form (2.1),
then A ∼G B. Hence, equidecomposability can also be defined as piecewise
G-congruence. We will repeatedly make use of this alternative definition.

Proposition 2.4 Equidecomposability is an equivalence relation on P(X).

Proof: It is obvious that ∼G is reflexive and symmetric. To show that ∼G is
transitive, let A1, . . . , An ⊆ A, B1, . . . , Bn ⊆ B and g1, . . . , gn ∈ G demonstrate
that A ∼G B, and let B′

1, . . . , B
′
m ⊆ B, C1, . . . , Cm ⊆ C and h1, . . . , hm ∈ G

demonstrate that B ∼G C. For i = 1, . . . , n and j = 1, . . . , m, define

Bij = Bi ∩B′
j.

First assume that Bij 6= ∅ for all i, j. Then, since Bij partition B, Aij = g−1
i .Bij

and Cij = hj.Bij are partitionings of A and C respectively, and

Cij = (hjgi).Aij.

Hence, A ∼G C. If some of the Bij’s are empty, we can ignore them, obtain a
partitioning in less than nm sets and then use the same argument. In all cases,
A ∼G C, and it follows that ∼G is an equivalence relation on P(X).

¤

The transitivity of ∼G shows that whenever the bijections g and h are in the form
(2.1), so is the bijection h ◦ g. This will be used repeatedly hereafter without
further discussion.

The following theorem reformulates Definition 1.1 in terms of equidecompos-
ability.

Theorem 2.5 A subset E ⊆ X is G-paradoxical if, and only if, there exist dis-
joint sets A,B ⊆ E, such that A ∼G E and B ∼G E.

Proof: It is trivial to see that, if A ∼G E and B ∼G E for some disjoint subsets
A,B ⊆ E ⊆ X, then E is G-paradoxical. Conversely, assume that E ⊆ X is
G-paradoxical, that is, there exist pairwise disjoint sets A1, . . . , An,B1, . . . , Bm of
E and elements g1, . . . , gn,h1, . . . , hm ∈ G with E =

⋃n
i1

gi.Ai =
⋃m

j1
hj.Bj. As

the unions are not necessarily over disjoint sets, we define A′
1 = A1 and

A′
k = Ak\g−1

k .(
k−1⋃
i=1

gi.A
′
i)

for k = 2, . . . , n. We now find that E =
⋃n

i=1 gi.A
′
i is a disjoint union. Hence,

E ∼G A′ =
⋃n

i=1 A′
i. Similarly, we can define B′ and obtain E ∼G B′. Since

A′ ⊆ A and B′ ⊆ B, where A =
⋃n

i=1 Ai and B =
⋃m

j=1 Bj, we find that
A′ ∩B′ = ∅ as required.
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¤
Now, with equidecomposability linked to paradoxicality, we show the following
essential result.

Proposition 2.6 Paradoxicality is a class property with respect to equidecom-
posability.

Proof: Suppose G acts on X and E, E ′ are G-equidecomposable subsets of
X, and that E is G-paradoxical. We want to show that E ′ is G-paradoxical.
According to Theorem 2.5, let A,B ⊆ E be two disjoint subsets with A ∼G

E ∼G B. Furthermore, let E1, . . . , En ⊆ E, E ′
1, . . . , E

′
n ⊆ E ′ and g1, . . . , gn ∈ G

witness that E ∼G E ′. Now, define

A′ =
n⋃

i=1

gi.(Ei ∩ A) and B′ =
n⋃

i=1

gi.(Ei ∩B).

Since
⋃n

i=1(Ei ∩A) = A, it follows that A ∼G A′ and equivalently that B ∼G B′.
As A and B are disjoint, then so are A′ and B′. We now have two disjoint subsets
A′, B′ ⊆ E ′ with A′ ∼G A ∼G E ∼G E ′ and B′ ∼G B ∼G E ∼G E ′, and due to
transitivity, A′ ∼G E ′ ∼G B′. Hence E ′ is G-paradoxical.

¤

2.3 The Banach–Tarski Paradox

Now we are ready to expand the Hausdorff paradox to the entire unit sphere
S2. The idea of the proof is to absorb the points in D; proofs by absorption are
standard tricks in the theory of equidecomposability.

Lemma 2.7 If D is a countable subset of S2, then S2 ∼SO3 S2\D.

Proof: Let l be a line through the origin, such that l ∩D = ∅. (The line l can
be found, since D is only countable.) Define

A = {θ ∈ [0, 2π[ | ∃n ∈ N ∃P ∈ D : ρn
θ (P ) ∈ D},

where ρθ is the rotation with angle θ about l. For fixed P ∈ D, there are
only countably many θ such that ρθ(P ) ∈ D. Since ρn

θ (P ) ∈ D if, and only
if, ρnθ(P ) ∈ D, there are only countably many (n, θ) such that ρn

θ (P ) ∈ D.
Since D is countable it follows that A is countable. We can therefore choose
θ0 ∈ [0, 2π[\A and find that D, ρθ0(D), ρ2

θ0
(D), . . . are pairwise disjoint (since

ρn
θ0

(D) ∩ ρm
θ0

(D) 6= ∅ implies ρn−m
θ0

(D) ∩D 6= ∅, which contradicts the choice of

θ0). Letting D̂ =
⋃∞

n=0 ρn
θ0

(D), we see that

S2 = D̂ ∪ (S2\D̂) ∼SO3 ρθ0(D̂) ∪ (S2\D̂) = S2\D,

as required.
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¤

Together with the Hausdorff paradox and Proposition 2.6, Lemma 2.7 shows that
S2 is SO3-paradoxical. An easy consequence of this is the Banach–Tarski paradox.

Theorem 2.8 (The Banach–Tarski Paradox)(AC) The unit ball B in R3 is
SO3-paradoxical.

Proof: The preceding comments and the radial correspondence between S2 and
B\{0}, given by P 7→ {rP | 0 < r ≤ 1}, shows that B\{0} is SO3-paradoxical.
To complete the proof, we only need to absorb the point 0, that is, show that
B ∼SO3 B\{0}. Let l denote the line through (0, 0, 1

2
) and (0, 1, 1

2
) and choose

a rotation ρ of infinite order about l. Now, as in the proof of Lemma 2.7, let
D̂ = {ρn(0) | n ∈ N0}. Since ρ(D̂) = D̂\{0}, B ∼SO3 B\{0}, as required.

¤

By letting 0 < r ≤ R in the radial correspondence, the Banach–Tarski paradox
can easily be expanded to cover all solid balls centred at the origin and with
radius R. Since all solid balls of radius R in R3 are O3-equidecomposable1 and
SO3 ⊆ O3, it follows that any solid ball is O3-paradoxical. By letting 0 < r < ∞,
we can even find that R3\{0} is SO3-paradoxical, and since the origin can be
absorbed, R3 is SO3-paradoxical. Actually, we can improve this even more by
the remarking result that any two bounded subsets with nonempty interiors are
O3-equidecomposable. To prove this we introduce an ordering 4O3 on P(R3).

Definition 2.9 For A,B ⊆ R3, A 4G B if A is G-equidecomposable with a
subset of B.

The relation 4G is actually a partial ordering of the ∼G-equivalence classes in
P(X). The difficult part in proving this is showing that 4G is antisymmetri-
cal. This is contained in the following generalization of Bernstein’s equivalence
theorem.

Theorem 2.10 (Banach–Schröder–Bernstein) Suppose a group G acts on
the set X, and A, B are subsets of X. If A 4G B and B 4G A, then A ∼G B.

Proof: The assumptions ensure the existence of subsets A′ ⊆ A and B′ ⊆ B
with A ∼G B′ and A′ ∼G B. Let f : A → B′ and g : A′ → B be bijections as in
(2.1). Note that since the restriction of f to C ⊆ A is written in the form (2.1)
as well, we have that C ∼G f(C), whenever C ⊆ A. Now, let C0 = A\A′ and
inductively define

Ci+1 = (g−1 ◦ f)(Ci) for i = 0, 1, . . . .

1On denotes the set of isometries in Rn.
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Letting C =
⋃∞

i=0 Ci, we obtain g(A\C) = B\f(C), since A\C = A′\C =
A′\((g−1 ◦ f)(C) ∪ C0) = A′\(g−1 ◦ f)(C). Hence, A\C ∼G B\f(C), and since
C ∼G f(C) as mentioned, we conclude that (A\C) ∪ C ∼G (B\f(C)) ∪ f(C),
that is, A ∼G B.

¤

Since the reflexivity and transitivity of 4G is obvious and 4G clearly is a class
property with respect to equidecomposability, an immediate consequence of The-
orem 2.10 is:

Corollary 2.11 The relation 4G is an ordering of the ∼G-classes in P(X).

We can now generalize the Banach–Tarski paradox to cover all bounded subsets
of R3 with a nonempty interior.

Theorem 2.12 (The Banach–Tarski Paradox – strong form)(AC) If A and
B are two bounded subsets of R3, each having a nonempty interior, then A ∼O3 B.

Proof: It suffices to show that A 4O3 B, since a similar argument yields B 4O3

A, and the theorem then follows from the antisymmetry of 4O3 . Choose solid
balls, K,L ⊆ R3, such that A ⊆ K and L ⊆ B. Let S = L1 ∪ · · · ∪ LN be
the set consisting of N disjoint copies of L, where N is chosen large enough
that we can find t1, . . . , tN ∈ O3 such that K ⊆ ⋃N

i=1 ti.Li. (This is possible
by the boundedness of K.) By repeatedly applying the original version of the
Banach–Tarski paradox, the remarks following this show that S ∼O3 L. As there
obviously exists an injection K → S in the form (2.1), A ⊆ K 4O3 S ∼O3 L ⊆ B,
so A 4O3 B as required.

¤



Chapter 3

The Type Semigroup and
Tarski’s Theorem

3.1 The Type Semigroup

If a group G acts on a set X, we can let X∗ = X ×N0 and G∗ = G× Perm(N0),
and define an enlarged action of G∗ on X∗ by (g, σ).(x, n) = (g.x, σ(n)). The new
set X∗ equips us with an infinite multitude of copies of X and enables us to define
G-paradoxicality of a subset E ⊆ X as E × {0} ∼G∗ E × {0, 1}, since E1 ∼G E2

if, and only if, E1 × {n} ∼G∗ E2 × {m} for all E1, E2 ⊆ X and n,m ∈ N0.

Definition 3.1 If A ⊆ X∗, then the elements in π2(A) (where π2 is the projection
of X∗ on N0) are called the levels of A. A is called bounded if it has only finitely
many levels.

Proposition 2.4 shows that ∼G∗ defines an equivalence relation on P(X∗). If a
subset A ⊆ X∗ is bounded and A ∼G∗ B, then B is bounded as well. We can
therefore define as follows.

Definition 3.2 The equivalence class with respect to G∗-equidecomposability of a
bounded subset A ⊆ X∗ is called the type of A and is denoted [A]. The collection
of types of bounded sets is denoted S.

For a bounded set B ⊆ X∗, an upward shift of B is a set

B′ = {(b, n + k) ∈ X∗ | (b, n) ∈ B},

where k ∈ N. We can now define the composition + on S by [A] + [B] =
[A∪B′], where B′ is an upward shift of B, such that the levels of B′ are disjoint
from the levels of A. Obviously, the composition is independent of the choice of
representatives and is therefore welldefined. Furthermore + is commutative and
associative, so (S, +) is an abelian semigroup with identity [∅]. We shall refer

15
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to (S, +) as the type semigroup with respect to G and X. The easiest way to
show that two types are identical is often to make use of the antisymmetry of the
ordering ≤, given by α ≤ β for α, β ∈ S if, and only if, there exists γ ∈ S such
that α + γ = β. To realize that ≤ actually defines an ordering on S, one can run
through the proof of the Banach–Schröder–Bernstein theorem.

The ordered type semigroup (S, +,≤) satisfies many simple properties. Mostly
we are interested in the apparently trivial cancellation law: nα = nβ ⇒ α = β.
This, however, is based on König’s theorem of graph theory. Therefore, recall
that a graph is a set V of vertices with a collection E of edges consisting of un-
ordered pairs of distinct elements of V . We allow graphs to have infinitely many
vertices and multiple edges. A graph is called bipartite if the vertex set splits
into two pieces so that each edge has one vertex in each piece. The degree of a
vertex v is the number of edges containing v. A graph is called k-regular if all
vertices in the graph have degree k. Finally, a perfect matching M is a subset of
E, satisfying the condition that each vertex v ∈ V is contained in one, and only
one, edge in M .

Theorem 3.3 (König’s Theorem)(AC) A k-regular bipartite graph (V,E),
where k < ∞ has a perfect matching.

Proof: Let u ↔ v if there exists a finite path from u to v. Since each edge is
unordered, ↔ divides V into connected equivalence classes, called components;
in the infinite case, this requires the axiom of choice, since we need to select a
representative from each class. Note that a perfect matching on each of the com-
ponents can be united to a perfect matching on the entire graph. Thus, it suffices
to find a perfect matching on each component. As the graph is k-regular, the
number of vertices that can be reached from a given vertex in a path of length n
is bounded by kn. Hence, each component is at most countable, so we need only
consider connected graphs that are finite or countably infinite.

So assume that G = (V, E) is a finite, connected, bipartite and k-regular graph.
The bipartiteness of G ensures that V = {a1, . . . , an, b1, . . . , bn} and that E con-
sists only of edges written as aibj. (Note that, since G is k-regular, there must
be as many ai’s as there are bj’s.) By induction on n, we want to show that G
has a perfect matching, the case n = 1 being trivial. So, assume that G has a
perfect matching for all n < m and consider the case n = m. Transform G by
the following algorithm:

(i) Choose j so that a1bj is in E and remove (one of) the edge(s) a1bj. Let
x = bj.

(ii) If x = bj, which it has just entered from as, choose the lowest i 6= s such
that aibj is in E. Add an additional edge aibj to E and set x = ai.
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(iii) If x = ai, which it has just entered from bt, choose the lowest j 6= t such
that aibj is in E. Remove (one of) the edge(s) aibj and set x = bj. Go to
(ii).

The algorithm terminates as soon as it is impossible to find an i in (ii) or a j in
(iii). Note that all edges arising in the transformed graphs are parallel to edges
in G. We suggest that the algorithm will terminate at some point, ending with
x = a1.

To see this, first suppose that the algorithm stops at x = bj for some j. If
x = ai in the previous step, the edge aibj has to have a multiplicity of k at the
point before termination. Since the algorithm cannot stop in step two (as this
would contradict the connectedness of G), we can always find bt 6= bj such that
x came to ai from bt. Therefore, at the point before termination, (one of) the
edge(s) aibt was doubled, which leaves ai with a degree of at least k + 2, which is
impossible.

Next, suppose that the algorithm terminates with x = ai where i 6= 1. If
x = bj in the previous step, the edge aibj has to have multiplicity k + 1 at
point of termination. Consequently, bj has degree at least k + 1 at the point of
termination, and this is impossible.

Finally, suppose that the algorithm never terminates. First, note that since
the degrees of all vertices are bounded by k−1 and k+1, an edge passed infinitely
often must be passed infinitely often in both directions. Consider a vertex bj and
suppose that three edges aibj, albj and asbj, where i < l < s, are passed infinitely
often. Then the edge asbj can only be passed in the direction from as to bj, since
aibj or albj is always preferred by the algorithm, and this is impossible. Similarly,
each of the ai’s are endpoints of at most two infinitely used edges. At the point in
the algorithm where all finitely used edges have already been passed, x therefore
moves around in a cycle. This, however, contradicts the proposition that all the
edges are passed infinitely often in both directions.

Based on this, we conclude that the algorithm at some point terminates with
x = a1. The construction of the algorithm now implies that a1 in the terminating
graph is connected to some bj by k parallel edges. This reveals a graph with k-
regular and bipartite components, each having less than 2m elements. Using the
induction hypothesis on these components, we obtain the desired perfect match-
ing in the case n = m, and the result follows by induction.

Next, assume that G is a countably infinite, connected, bipartite and k-regular
graph. Note that, since G is k-regular, both V and E are countably infinite, so
we can enumerate E by E = {en | n ∈ N}. Consider the collection of all finite
sequences in {0, 1}. Such a sequence s of length n is said to be good if there exists
a finite k-regular graph (Vn, En) with {e1, . . . , en} ⊆ En and a perfect matching
Mn ⊆ En, such that ei ∈ Mn if, and only if, 1 is the ith element of s. (Ob-
serve that the condition {e1, . . . , en} ⊆ En implies that the vertices appearing in
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{e1, . . . , en} are contained in Vn.)
First, let us realize that, for all n ∈ N, there is at least one good sequence of

length n. Consider the finite bipartite graph, consisting of the edges e1, . . . , en and
the vertices emanating from these. Adding vertices to equalize the two parts of the
graph and adding edges wherever necessary to push the degree of each vertex up
to k produces a finite, bipartite and k-regular graph (Vn, En). By the finite case,
(Vn, En) has a perfect matching Mn, so the sequence s = (1Mn(e1), . . . , 1Mn(en))
is good as required.

Based on this, we conclude that there are infinitely many good sequences.
Since there are only finitely many sequences in {0, 1} of length i, we can there-
fore inductively define the sequence s = (si)i∈N, satisfying the condition that
(s1, . . . , si) has infinitely many good extensions for i = 1, 2, . . . . Note that each
initial segment of s is good, since any segment with a good extension is neces-
sarily good itself. We suggest that M = {ei | si = 1} is a perfect matching
of G. To see that any vertex v ∈ V appears in M , choose n sufficiently large
that all k edges emanating from v are contained in {e1, . . . , en}. As the initial
segment (s1, . . . , sn) is good, there exists a finite, bipartite and k-regular graph
(Vn, En) with {e1, . . . , en} ⊆ En and a perfect matching Mn. Hence, there exists
an i ≤ n such that si = 1 and ei is an edge emanating from v, so v appears in
M . Clearly v cannot appear twice in M , since this would contradict Mn being a
perfect matching on (Vn, En). Consequently, M is the required perfect matching
on G, and the result follows.

¤

After this rather lengthy proof, let us return to the type semigroup (S, +) with
respect to G and X and state the essential cancellation law.

Theorem 3.4 (AC) For α, β ∈ S and n ∈ N, nα = nβ implies α = β.

Proof: Suppose nα = nβ, that is, there exist two disjoint, bounded and G∗-
equidecomposable subsets E, E ′ ⊆ X∗, with partitionings E =

⋃n
i=1 Ai and E ′ =⋃n

j=1 Bj such that [Ai] = α and [Bj] = β for all i, j. Let χ : E → E ′ be in
the form (2.1), demonstrating that E ∼G∗ E ′, and let likewise φi : A1 → Ai and
ψj : B1 → Bj demonstrate that A1 ∼G∗ Ai and B1 ∼G∗ Bj, taking φ1 and ψ1 to
be the identity. For all a ∈ A1 and b ∈ B1, define

ā = {a, φ2(a), . . . , φn(a)} and b̄ = {b, ψ2(b), . . . , ψn(b)}.
Note that, since φi and ψj are bijections, {ā | a ∈ A1} and {b̄ | b ∈ B1} are
partitionings of E and E ′ respectively.

Now, we can form a bipartite graph by letting {ā | a ∈ A1} and {b̄ | b ∈ B1}
be the two parts of the vertex set, and, for each i = 1, . . . n, introducing the edge
āb̄ if χ(φi(a)) ∈ b̄. Obviously, each ā has degree n (counted with multiplicity).
However, each b̄ appears in the edges corresponding to χ−1(ψj(b)) for j = 1, . . . n.
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Hence, the graph is n-regular, and König’s theorem ensures that it has a perfect
matching M . For each ā, we can now uniquely determine b̄, such that āb̄ ∈ M ,
so

Cij = {a ∈ A1 | āb̄ ∈ M ⇒ χ(φi(a)) = ψj(b)}
is a partitioning of A1. Similarly,

Dij = {b ∈ B1 | āb̄ ∈ M ⇒ χ(φi(a)) = ψj(b)}

is a partitioning of B1. Furthermore, the mapping ψ−1
j ◦ χ ◦ φi : Cij → Dij is a

bijection in the form (2.1), since ψj, χ and φi are, so the bijection A1 → B1 given
by x 7→ (ψ−1

j ◦ χ ◦ φi)(x) for x ∈ Cij is also in the form (2.1). Hence, A1 ∼G∗ B1,
or α = β, as desired.

¤

Since E ⊆ X is G-paradoxical if, and only if, [E] = 2[E], we intend to make use
of the following corollary.

Corollary 3.5 (AC) If α ∈ S and n ∈ N0 satisfy (n + 1)α ≤ nα, then α = 2α.

Proof: Successive use of the hypothesized inequality yields for n ≥ 1 that
nα ≥ (n + 1)α = nα + α ≥ · · · ≥ nα + nα = 2nα. Obviously nα ≤ 2nα, so by
the antisymmetry of ≤, nα = 2nα, and the cancellation law gives α = 2α. The
case n = 0 is trivial.

¤

3.2 Tarski’s Theorem

Tarski’s theorem ties paradoxicality and measure theory together by stating that
a subset E of X is not G-paradoxical if, and only if, there exists a finitely additive
and G-invariant measure µ on (X,P(X)), normalizing E. The latter implies the
former, since the paradoxicality of E gives 2 = 2µ(E) ≤ µ(E) = 1. To prove
the other direction, we shall attempt to construct a measure ν on S (that is, a
mapping ν : S → [0,∞] with ν(α+β) = ν(α)+ν(β)), such that ν([E×{0}]) = 1.
The measure ν induces a measure µ on (X,P(X)) by letting µ(A) = ν([A×{0}]),
and µ obviously has the desired properties.

In the following lemma and theorem, we consider a commutative semigroup
(T , +) on which we can define the preordering α ≤ β if α + γ = β for some
γ ∈ T . Note that the ordering is not necessarily total. For ε ∈ T , we say that α
is bounded with respect to ε, if there exists n ∈ N, such that α ≤ nε.

Lemma 3.6 Suppose (T , +) is a commutative semigroup and that ε ∈ T . Fur-
thermore, assume that all elements of T are bounded by ε and that (n+1)ε � nε
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for all n ∈ N0. If T0 is a finite subset of T and ε ∈ T0, then there exists a func-
tion ν : T0 → [0,∞], such that ν(ε) = 1 and ν(α + β) = ν(α) + ν(β) whenever
α, β, α + β ∈ T0.

Proof: Instead of proving the existence of a measure as above, we will, under
the hypothesized conditions, prove the existence of a measure ν : T0 → [0,∞] with
ν(ε) = 1 and

∑n
i=1 ν(αi) ≤

∑m
j=1 ν(βj) for all αi, βj, satisfying α1 + · · · + αn ≤

β1 + · · · + βm. This is sufficient, since the additive property of ν easily follows
from the last of these conditions.

The proof is by induction on the size of T0. The case |T0| = 1 implies T0 = {ε},
so ν(ε) = 1 is the desired function. The fact that ν satisfies the latter condition
can be reduced to showing that mε ≤ nε imply m ≤ n, but this follows from the
hypothesis on ε, since mε ≤ nε and m ≥ n + 1 implies (n + 1)ε ≤ mε ≤ nε,
which is a contradiction.

Suppose next that |T0| > 1 and that ν exists in any smaller case of |T0|.
Let ξ be an element in T0\{ε} and let ν ′ be a function on T0\{ξ} satisfying the
conditions of the lemma. Define ν : T0 → [0,∞] by

ν(τ) =

{
ν ′(τ) for τ ∈ T0\{ξ}
inf{

Pp
i=1 ν′(δi)−

Pq
j=1 ν′(γj)

r
} for τ = ξ

(3.1)

where the infimum is taken over all r ∈ N and δi, γj ∈ T0\{ξ}, satisfying the
condition that γ1 + · · ·+ γq + rξ ≤ δ1 + · · ·+ δp. Since all elements in T0\{ξ} are
bounded by some nε, ν ′ takes only finite values, so the set on which the infimum
is taken is welldefined. That ν actually maps T0 to [0,∞] is a consequence of the
desired property of ν, since ε ≤ ε + ξ then implies 1 ≤ 1 + ν(ξ). It therefore only
remains to show that ν satisfies the latter condition.

We want to show that, if α1 + · · · + αm + sξ ≤ β1 + · · · + βn + tξ, where
αi, βj ∈ T0\{ξ} and s, t ∈ N0, then

∑m
i=1 ν ′(αi) + sν(ξ) ≤ ∑n

j=1 ν ′(βj) + tν(ξ).
We divide into three possible cases.

In the case s = 0 and t = 0, the desired inequality follows from the properties
of ν ′.

Next, assume s = 0 and t > 0. We want to obtain that

ν(ξ) ≥
∑m

i=1 ν ′(αi)−
∑n

j=1 ν ′(βj)

t
.

It suffices to show that the following inequality holds for all δi, γj, r satisfying the
conditions of the infimum in (3.1):

∑p
i=1 ν ′(δi)−

∑q
j=1 ν ′(γj)

r
≥

∑m
i=1 ν ′(αi)−

∑n
j=1 ν ′(βj)

t
. (3.2)

From the given inequality α1 + · · ·+ αm ≤ β1 + · · ·+ βn + tξ, we obtain

rα1 + · · ·+ rαm + tγ1 + · · ·+ tγq ≤ rβ1 + · · ·+ rβn + rtξ + tγ1 + · · ·+ tγq

≤ rβ1 + · · ·+ rβn + tδ1 + · · ·+ tδp.
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The induction hypothesis on ν ′ now yields

r

m∑
i=1

ν ′(αi) + t

q∑
j=1

ν ′(γj) ≤ r

n∑
j=1

ν ′(βj) + t

p∑
i=1

ν ′(δi),

which implies the desired inequality (3.2).
Finally, suppose s > 0. It suffices to show that

m∑
i=1

ν ′(αi) + sν(ξ) ≤
n∑

j=1

ν ′(βj) + tz,

where

z =

∑p
i=1 ν ′(δi)−

∑q
j=1 ν ′(γj)

r

for arbitrary γj, δi, r satisfying the conditions of the infimum in (3.1). From the
given inequality α1 + · · ·+ αm + sξ ≤ β1 + · · ·+ βn + tξ, we obtain

rα1 + · · ·+ rαm + tγ1 + · · ·+ tγq + rsξ ≤ rβ1 + · · ·+ rβn + rtξ + tγ1 + · · ·+ tγq

≤ rβ1 + · · ·+ rβn + tδ1 + · · ·+ tδp.

If the second step is ignored, the above inequality is a typical one used to define
ν(ξ), and it follows that

m∑
i=1

ν ′(αi) + sν(ξ) ≤
m∑

i=1

ν ′(αi) +

s
r
∑n

j=1 ν ′(βj) + t
∑p

i=1 ν ′(δi)− r
∑m

i=1 ν ′(αi)− t
∑q

j=1 ν ′(γj)

rs

=
n∑

j=1

ν ′(βj) + tz,

as required. Hence, ν has the desired properties.

¤

Theorem 3.7 (AC) Suppose (T , +) is a commutative semigroup and that ε ∈
T . Then the following statements are equivalent:

(i) For all n ∈ N0, (n + 1)ε � nε.

(ii) There exists a finitely additive measure µ on T (that is, a function µ : T →
[0,∞] with µ(α + β) = µ(α) + µ(β) for all α, β ∈ T ), such that µ(ε) = 1.
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Proof: Suppose (n + 1)ε ≤ nε, that is, there exists γ ∈ T , such that (n + 1)ε +
γ = nε. Then there cannot exist a function µ satisfying the conditions in (ii), as
this would require n + 1 = µ((n + 1)ε) ≤ µ((n + 1)ε + µ(γ) = µ(nε) = n. Hence,
(ii) implies (i).

To prove that (i) implies (ii), we can, without loss of generality, assume that
all elements of T are bounded with respect to ε, for once we have a measure on
the bounded elements, it can be extended by assigning the unbounded elements
measure ∞. So, suppose that (n + 1)ε � nε for all n ∈ N, and, for any finite
subset T0 ⊆ T containing ε, let M(T0) consist of all functions f ∈ [0,∞]T ,
satisfying the condition that f(ε) = 1 and f(α + β) = f(α) + f(β) whenever
α, β, α + β ∈ T0. Note, that according to Lemma 3.6, M(T0) is nonempty.

Since [0,∞]T is a product of compact spaces, Tychonoff’s theorem (which
requires the axiom of choice) shows that [0,∞]T is compact. We therefore know
that the intersection of a collection of closed subsets of [0,∞]T is nonempty
whenever any intersection of finitely many members of the collection is nonempty.
Therefore, if we can prove that theM(T0)’s are closed and that any intersection of
finitely many of them is nonempty, we can conclude that there exists a measure µ
that lies in everyM(T0). This measure is as desired, since µ(α+β) = µ(α)+µ(β)
follows from the fact that µ ∈M({{ε, α, β, α + β}).

To prove that M(T0) is closed in [0,∞]T , we show that the complement is
open. So, suppose f(ε) 6= 1 or f(α + β) 6= f(α) + f(β) for some α, β, α + β ∈ T0.
If f(ε) 6= 1, then there exists an open set O ⊆ [0,∞] with f(ε) ∈ O and 1 /∈ O
(since [0,∞] is T1), and π−1

ε (O) (where πε projects f on f(ε)) is an open set
contained in the complement of M(T0). Hence, the complement of M(T0) is
open. A similar argument can be applied if f(α + β) 6= f(α) + f(β), and we
conclude that M(T0) is closed.

To prove that any intersection of finitely many M(T0)’s is nonempty, note
that, if T1, . . . , Tn are finite subsets of T containg ε, then

n⋂
i=1

M(Ti) ⊇M(
n⋃

i=1

Ti).

Since Lemma 3.6 shows that M(
⋃n

i=1 Ti) 6= ∅, we therefore find that
⋂n

i=1M(Ti)
is nonempty, as required.

¤

Now, all the hard work is done in proving the theorem, describing the ultimate
connection between measure theory and paradoxicality.

Theorem 3.8 (Tarski’s Theorem)(AC) Suppose G is a group acting on a set
X, and let E ⊆ X. Then E is not G-paradoxical if, and only if, there exists a
finitely additive and G-invariant measure µ on (X,P(X)) with µ(E) = 1.
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Proof: The easy direction was already discussed earlier, so assume that E is
not G-paradoxical. Let S be the type semigroup with respect to G and X and let
ε = [E ×{0}]. As mentioned earlier, the fact that E is not G-paradoxical means
that ε = [E × {0}] 6= [E × {0, 1}] = 2ε. Corollary 3.5 now gives (n + 1)ε � nε
for all n ∈ N0, and Theorem 3.7 provides a finitely additive measure ν on S
with ν(ε) = 1 and ν(α + β) = ν(α) + ν(β) for all α, β ∈ S. Now, the measure
µ : P(X) → [0,∞] defined by µ(A) = ν([A × {0}]) is the desired G-invariant
measure.

¤

Tarski’s theorem shows that no finite groups are paradoxical, since any such group
G can be equipped with the measure µ(A) = |A|/|G|. Note in connection with
this the introductory remarks concerning infinity and paradoxes.

As another example of an application of Tarski’s theorem, one could show
that the group (Z, +) is not paradoxical. This would, of course, be done by
constructing a finitely additive measure π with π(Z) = 1 and π(E) = π(z + E)
for all E ⊆ Z and z ∈ Z. The strategy is motivated by the finite case, as one
would attempt to approximate a measure in the form ‘E 7→ |E|/|Z|’. Similarly,
one could show that Z2 ∗ Z2 is not paradoxical — a rather remarkable result, as
we already know that Z ∗ Z and Z2 ∗ Z3 are paradoxical.

Our final application of Tarski’s theorem is to the Banach–Tarski paradox.
In its strong form, the Banach–Tarski paradox combined with Tarski’s theorem
implies the following amazing result:

Theorem 3.9 (AC) There exists no finitely additive and O3-invariant measure
on R3 that can normalize a bounded set with a nonempty interior.
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